Levosimendan off-label successfully used in two patients with exacerbated COPD and severe bronchospasm: a case series focusing on an explorative review of the current literature

Ludovica Golino, Marco Caiazzo, Pasquale Diglio, Espedito Tornincasa, Gianmarco Russo, Francesco Imperatore

Unit of Anesthesia and Intensive Care, San Giovanni di Dio Hospital, Frattamaggiore (NA), Italy

Abstract

Levosimendan was used off label to treat two patients with similar clinical and medical history (severe COPD, bronchospasm, cigarette smoking, difficult weaning). Starting from these two favorable cases, an explorative review of the current literature was conducted relating to this use of Levosimendan and its rationale.

Introduction

Levosimendan is a positive inotropic compound with vasodilatory properties used for the treatment of acute decompensated heart failure (AHF). The principal mechanism of levosimendan is the sensitization of troponin C to calcium in cardiac muscle, which leads to its unique feature of exerting a positive inotropic effect without increasing myocardial oxygen consumption. Furthermore, levosimendan opens adenosine triphosphate-sensitive potassium (KATP) channels in vascular smooth muscle cells and induces vasodilation of the pulmonary, coronary, and peripheral arteries and of the venous circulation. By addressing both cardiac inotropy and vascular dilatation, levosimendan improves cardiovascular coupling and cardiac mechanical efficiency. At higher doses, the drug also acts as a phosphodiesterase type 3 (PDE3) inhibitor.1

Levosimendan is designed for the treatment of AHF in patients with low cardiac output and at high risk of surgery.2 However, there are some promising and interesting off-label uses of the drug, owing to its pharmacology, as the use in patients with exacerbated chronic obstructive pulmonary disease (COPD), muscle weakness and severe bronchospasm. Treatment with the calcium-sensitizing drug levosimendan, in fact, may be effective in improving muscle function in patients with respiratory muscle weakness, which often accompanies chronic diseases such as COPD and congestive heart failure, according to researchers in the Netherlands, who studied the effects of the drug on healthy volunteers. The drug, which is normally prescribed in patients with acute heart failure, increases the sensitivity of muscle tissue to calcium, improving the muscle's ability to contract.3 Studies on animal models seems to confirm these theories.4 Levosimendan is generally well tolerated by patients and hypotension is one of the most observed side effects but is not common when the treatment remains within the recommended dose. If necessary, hypotension can be countered by low-dose norepinephrine.

Case 1

A 68-year-old female patient required orotracheal intubation, mechanical ventilation, and admitted to the ICU for severe respiratory failure caused by a COPD exacerbation (without infection). In medical history: severe COPD, smoking (40 cigarettes per day), obesity with BMI 44, arterial hypertension, type II diabetes mellitus. After six days, with a minimal improvement in respiratory exchanges on blood gas analysis, weaning was attempted with failure and further worsening of the respiratory exchanges. The P/F ratio was maintained around a value of 120. From hospitalization,
A 62-year-old female patient required orotracheal intubation, mechanical ventilation, and admitted to the ICU for severe respiratory failure caused by a COPD exacerbation (without infection). In medical history: emphysematous COPD, smoking (50 cigarettes per day), malnutrition with BMI 17, arterial hypertension. After seven days, with a minimal improvement in respiratory exchanges on blood gas analysis, weaning was attempted with failure and further worsening of the respiratory exchanges. The P/F ratio was maintained around a value of 100. From hospitalization, bronchodilator therapy (salbutamol 2 puffs/day) and intravenous corticosterone (dexamethasone 4 mg x 2 times/day) were administered. Therefore, the patient underwent percutaneous tracheotomy and sedation was suspended with recovery of consciousness and no motor deficit. The patient remained ventilator dependent in assisted mode (pressure support 18 cmH2O, FiO2 70%, PEEP 8 cmH2O with a tidal volume of 300-400 ml, values that kept airway pressures below recommended limits). A bronchodilator therapy by aerosol was begun but despite the optimization of the therapy the patient had numerous episodes (even 6-7 per day) of severe bronchospasm, which could only be resolved through adrenaline 0.1 mg in aerosol. During and after these episodes the patient desaturated with SpO2 of 70%. Following the numerous episodes of bronchospasm that caused desaturation and maladaptation to the ventilator, the P / F steadily dropped below the value of 100. It was therefore decided to try an off-label bronchodilator therapy with Levosimendan. Echocardiography was performed before drug administration: estimated EF of 50%, TAPSE 18 mm (comparable to the previous one). Levosimendan was administered on the 15th day of hospitalization (8 days after the tracheostomy and the patient's awakening) at the following dosage: bolus of 10 mcg / kg over 10 minutes followed by an infusion of 0.1 mcg / kg / min for 24 hours. During the drug infusion no significant side effects were found, the patient always maintained good hemodynamic, the heart rate did not undergo variations above 20% of the base rate that were not justified by external causes (for example: bronchial aspiration). From the first day of starting therapy, the episodes of bronchospasm appeared drastically reduced; in the following days these episodes occurred rarely (<1 / day on average) and moreover the patient never required treatment with aerosol adrenaline. Three days after therapy with Levosimendan, a second echocardiogram was performed: estimated EF of 55%, TAPSE 18mm. The patient's muscle strength appeared to be increased as she gradually managed to reach tidal volumes of 500-600 ml with the same support pressure and without increased airway pressures. Over the next few days, blood gases gradually improved and it ventilatory support and FiO2 were reduced. On the 20th day of hospitalization, the P / F reached the value of 200 with good adaptation to ventilation, support pressure 14 cmH2O, PEEP 6 cmH2O and FiO2 45%. On the 26th day, a P / F of 260 was reached, then the patient performed a trial of spontaneous breathing with T-tube on tracheostomy tube with FiO2 60%. In spontaneous breathing the P / F remained around 180 with no signs of respiratory distress. From that moment the patient alternated spontaneous breathing with P / F of about 190, with assisted ventilation with P / F about 300. After 35 days of hospitalization, the patient was discharged home without tracheostomy, and oxygen therapy during the day.

Materials and Methods

To identify utility of Levosimendan in COPD we conducted a non-systematic literature research. A literature searches up to September 2023 in PUBMED was performed using the following research terms: “Levosimendan in COPD, Levosimendan off-label, Levosimendan in bronchospasm.” Publications were accepted in any format, language, or publication status. All retrospective, prospective and randomized controlled studies, case reports and case series on humans and animal studies were included. Studies on pediatric population were excluded. The initial research identified 19 studies. A total of 13 studies were included. Studies on pediatric population were excluded. The initial research identified 19 studies. A total of 13 studies were included: 4 studies concerned pediatric patients, the other 9 did not focus on the research topic. Publications included in the review were 6 (Figure 1). We list all the studies included in the review in chronological order of publication; we also specified the study type (Table 1).

Results

The use of levosimendan appeared effective in two clinical cases. Patients selected for off-label therapy were both characterized by exacerbated COPD, cigarette smoking, numerous episodes of bronchospasm, difficult weaning expected. In both cases, levosimendan therapy was related to an increase in P/F following a greater support 14 cmH2O, FiO2 60%, PEEP 6 cmH2O with a tidal volume of 200-300 ml, values that kept airway pressures below recommended limits). A bronchodilator therapy by aerosol was begun but despite the optimization of the therapy the patient had numerous episodes (even 4-5 per day) of severe bronchospasm, which could only be resolved through adrenaline 0.1 mg in aerosol. During and after these episodes the patient desaturated with SpO2 of 80%. It was therefore decided to try an off-label bronchodilator therapy with levosimendan. Echocardiography was performed before drug administration: estimated EF of 60%, TAPSE 19 mm. Levosimendan was administered on the 12th day of hospitalization (6 days after the tracheostomy and the patient's awakening) at the following dosage: bolus of 10 mcg / kg over 10 minutes followed by an infusion of 0.1 mcg / kg / min for 24 hours. During the drug infusion no significant side effects were found. Three days after therapy with Levosimendan, a second echocardiogram was performed: estimated EF of 60%, TAPSE 19 mm (comparable to the previous one). From the first day of starting therapy, the episodes of bronchospasm appeared drastically reduced; in the following days these episodes occurred rarely (<1 / day on average) and moreover the patient never required treatment with aerosol adrenaline. The patient's muscle strength appeared to be increased as she gradually managed to reach tidal volumes of about 400 ml with the same support pressure and without increased airway pressures. Over the next few days, blood gases gradually improved and it ventilatory support and FiO2 were reduced. On the 20th day of hospitalization, the P / F reached the value of 200 with good adaptation to ventilation, support pressure 12 cmH2O, PEEP 5 cmH2O and FiO2 35%. On the 20th day, a P / F of 300 was reached, then the patient performed a trial of spontaneous breathing with T-tube on tracheostomy tube with FiO2 40%. In spontaneous breathing the P / F remained around 250 with no signs of respiratory distress. From that moment the patient alternated spontaneous breathing with P / F of about 250, with assisted ventilation with P / F greater than 300. After 25 days of hospitalization, the patient was discharged home without tracheostomy and oxygen therapy during the day.
adaptation to the mechanical ventilator, a drastic reduction in bronchospasm episodes, the absence of significant side effects. Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder of the lung characterized by poorly reversible airflow limitation. There is also an important muscle weakness which can disadvantage weaning from mechanical ventilator. It is not a unique disease entity but rather a complex of conditions which include emphysema, chronic bronchitis and, sometimes coexists with asthma.

Table 1. Publications included in the explorative review.

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year of publication</th>
<th>Type of study</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Hees et al.</td>
<td>Levosimendan enhances force generation of diaphragm muscle</td>
<td>2009</td>
<td>Research Control Trial</td>
<td>Levosimendan enhances force generating capacity of diaphragm fibers from patients with and without COPD patients by increasing calcium sensitivity of force generation. These results provide a strong rationale for testing the effect of calcium sensitizers on respiratory muscle dysfunction in patients with COPD</td>
</tr>
<tr>
<td>Ouanes-Besbes et al.</td>
<td>Weaning difficult-to-wean chronic obstructive pulmonary disease patients: a pilot study comparing initial hemodynamic effects of levosimendan and dobutamine</td>
<td>2011</td>
<td>Comparative study</td>
<td>Both drugs reduced the magnitude of pulmonary artery occlusion pressure (PAOP) increase at spontaneous breathing in difficult-to-wean COPD patients. PAOP increase was reduced to a greater extent by Levosimendan</td>
</tr>
<tr>
<td>Doorduin et al.</td>
<td>The calcium sensitizer levosimendan improves human diaphragm function</td>
<td>2012</td>
<td>Randomized control trial</td>
<td>The calcium sensitizer levosimendan improves neuromechanical efficiency and contractile function of the human diaphragm. These findings suggest a new therapeutic approach to improve respiratory muscle function in patients with respiratory failure</td>
</tr>
<tr>
<td>Brussels et al.</td>
<td>Ventilator-induced diaphragm dysfunction: clinically relevant problem</td>
<td>2014</td>
<td>English abstract German review</td>
<td>Levosimendan has been proven to increase diaphragm contractile forces in humans which may prove to be helpful for patients experiencing difficult weaning</td>
</tr>
<tr>
<td>Babik et al.</td>
<td>Levosimendan prevents bronchoconstriction and adverse respiratory tissue mechanical changes in rabbits</td>
<td>2017</td>
<td>Research controlled trial</td>
<td>The beneficial effects of Levosimendan on the lung periphery were also reflected in its ability to prevent elevations in respiratory tissue damping and stiffness. The association of these well-known circulatory effects with the currently demonstrated beneficial changes in respiratory mechanics might decrease the oxygen demand of spontaneous breathing. This multimodal cardiorespiratory benefit has a potential of shortening the time of invasive ventilation following its application</td>
</tr>
<tr>
<td>Zambelli et al.</td>
<td>Treatment with levosimendan in an experimental model of early ventilator-induced diaphragmatic dysfunction</td>
<td>2023</td>
<td>Research controlled trial</td>
<td>Levosimendan preserves muscular cell structure (cross-sectional area) and muscle autophagy after 5 hours of mechanical ventilation in a rat model. However, Levosimendan did not improve diaphragm contractile efficiency</td>
</tr>
</tbody>
</table>
Levosimendan could be a useful therapeutic tool to overcome a COPD exacerbation, due to its bronchodilator effect (COPD with asthmatic component) and ability to stimulate muscle fibers (respiratory pump deficiency in severe COPD).

Already in 2009, an experimental study was conducted by van Hees et al. injecting predefined amounts of Levosimendan onto diaphragm muscle fibers of volunteers (COPD and non-COPD). The study demonstrated that Levosimendan enhances the force-generating capacity of diaphragm fibers from patients with and without COPD by increasing calcium sensitivity of force generation. In a much more recent trial mouse models were used, and the available data demonstrated that the infusion of levosimendan prevents muscle damage related to mechanical ventilation in mice, although it does not appear to influence muscle contractility.

Our series of two patients and the material found in the literature seem to constitute data in favor of levosimendan in patients with acute COPD and bronchospasm.

Conclusions

In conclusion, the use of Levosimendan in patients with COPD, bronchospasm and expected difficult weaning due to muscle pump deficiency is an interesting possibility. The literature offers some ideas, but it is an area that requires further study and in-depth analysis.

References